Coal Combustion Waste Impoundment Dam Assessment Report # Wood River Power Station Dynegy Midwest Generation, Inc. Alton, Illinois ## Project # 0-381 Assessment of Dam Safety Coal Combustion Surface Impoundments for the REAC Program #### Prepared for: Lockheed Martin Services, Inc. Edison, New Jersey for United States Environmental Protection Agency Cincinnati, Ohio ### Prepared by: Dewberry & Davis LLC Management & Consulting Services Division Mount Laurel, New Jersey Under Contract Number: EP-C-04-032: REAC June 2009 Revision I, July 7, 2009 #### INTRODUCTION The release of over 5 million cubic yards of coal ash from the Tennessee Valley Authority's Kingston, Tennessee, facility in December 2008 serves as an important reminder of the need for our continued diligence on disposal units where coal combustion wastes are managed. The coal ash from the facility flooded more than 300 acres of land, damaging homes and property. It is critical that we all work to the best of our abilities to prevent a similar catastrophic failure and resultant environmental damage. One of the first steps in this effort is to assess the stability of the impoundments and similar units that contain coal combustion residuals and by-products to determine if and where corrective measures may be needed and then to carry out those measures as expeditiously as possible. This report for the Wood River Power Plant facility assesses the stability of the following management units. This evaluation is based on a site assessment conducted on (add date) by (add name of contractor and subcontractor for IISFPA. #### PURPOSE AND SCOPE The U.S. Environmental Protection Agency (EPA) is embarking on an initiative to investigate the potential for catastrophic failure of Coal Combustion Surface Impoundments (i.e., management unit) from occurring at electric utilities in an effort to protect lives and property from the consequences of a dam failure or the improper release of impounded slurry. The EPA initiative is intended to identify conditions that may adversely affect the structural stability and functionality of a management unit and its appurtenant structures (if present); to note the extent of deterioration (if present), status of maintenance and/or a need for immediate repair; to evaluate conformity with current design and construction practices; and to determine the hazard potential classification for units not currently classified by the management unit owner or by a state or federal agency. The initiative will address management units that are classified as having a Less-than-Low, Low, Significant or High Hazard Potential ranking. In February 2009, the EPA sent letters to coal-fired electric utilities seeking information on the safety of surface impoundments and similar facilities that receive liquid-borne material that store or dispose of coal combustion residue. This letter was issued under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 104(e), to assist the Agency in assessing the structural stability of such management units, including which facilities should be visited to perform a safety assessment of the berms, dikes, and dams used in the construction of these impoundments. EPA requested that utility companies identify all management units including surface impoundments or similar diked or bermed management units or management units designated as landfills that receive liquid-borne material used for the storage or disposal of residuals or by-products from the combustion of coal, including, but not limited to, fly ash, bottom ash, boiler slag, or flue gas emission control residuals. Utility companies provided information on the size, design, age and the amount of material placed in the units. The EPA used the information received from the utilities to determine preliminarily which management units had or potentially could have High Hazard Potential ranking. The purpose of this report is to evaluate the condition and potential of waste release from the selected High Hazard Potential management units. This evaluation included a site visit. Prior to conducting the site visit, a two-person team reviewed the information submitted to EPA, reviewed any relevant publicly available information from state or federal agencies regarding the unit hazard potential classification (if any) and accepted information provided via telephone communication with the management unit owner. EPA sent two engineers from Dewberry, one of whom was a professional engineer (PE), for a one-day site visit. The two-person team met with the owner of the management unit to discuss the engineering characteristics of the unit as part of the site visit. During the site visit, the team collected additional information about the management unit to be used in determining the hazard potential classification of the management unit(s). Factors considered in determining the hazard potential classification of the management units(s) included the age and size of the impoundment, the quantity of coal combustion residuals or by-products that were stored or disposed of in these impoundments, its past operating history, and its geographic location relative to down gradient population centers and/or sensitive environmental systems. This report presents the opinion of the assessment team as to the potential of catastrophic failure and reports on the condition of the management unit(s). The team considered criteria in evaluating dams under the National Inventory of Dams, in making these determinations. #### **LIMITATIONS** The assessment of dam safety reported herein is based on field observations and review of readily available information provided by the owner/operator of the subject coal combustion waste management unit(s). Qualified Dewberry engineering personnel performed the field observations and review and made the assessment in conformance with the required scope of work and in accordance with reasonable and acceptable engineering practices. No other warranty, either written or implied, is made with regard to our assessment of dam safety. | | INTR | j DUCTION i | | | |----------|------------|---|--|--| | | PURF | OSE AND SCOPEi | | | | 1.0 | CONC | CONCLUSIONS AND RECOMMENDATIONS | | | | | 1.1 | CONCLUSIONS | | | | | | 1.1.1 Conclusions Regarding the Structural Soundness of the Management Unit(s) | | | | | | 1.1.2 Conclusions Regarding the Hydrologic/Hydraulic Safety of the Management Unit(s) | | | | | | 1.1.3 Conclusions Regarding the Adequacy of Supporting Technical Documentation | | | | | | 1.1.4 Conclusions Regarding the Description of the Management Unit(s) | | | | | | 1.1.5 Conclusions Regarding the Field Observations | | | | | | 1.1.6 Conclusions Regarding the Adequacy of Maintenance and Methods of Operation | | | | | | 1.1.7 Conclusions Regarding the Adequacy of the Surveillance and Monitoring Program | | | | | | 1.1.8 Classification Regarding Suitability for Continued Safe and Reliable Operation | | | | | 1.2 | RECOMMENDATIONS | | | | | | 1.2.1 Recommendations Regarding the Structural Stability | | | | | | 1.2.2 Recommendations Regarding the Hydrologic/Hydraulic Safety | | | | | | 1.2.3 Recommendations Regarding the Supporting Technical Documentation | | | | | | 1.2.4 Recommendations Regarding the Description of the Management Unit(s) | | | | | | 1.2.5 Recommendations Regarding the Field Observations | | | | | | 1.2.6 Recommendations Regarding the Maintenance and Methods of Operation | | | | | | 1.2.8 Recommendations Regarding Continued Safe and Reliable Operation | | | | | 1.3 | PARTICIPANTS AND ACKNOWLEDGEMENT | | | | | 1.0 | 1.3.1 List of Participants | | | | | | 1.3.2 Acknowledgement and Signature | | | | | | | | | | 2.0 | DESC | RIPTION OF THE COAL COMBUSTION WASTE MANAGEMENT UNIT(S) | | | | | ٠. | | | | | | 2.1 | LOCATION | | | | | 2.2
2.3 | SIZE AND HAZARD CLASSIFICATION | | | | | 2.a
2.4 | PRINCIPAL PROJECT STRUCTURES | | | | | ۷.٦ | 2.4.1 Earth Embankment Dam | | | | | | 2.4.2 Outlet Structures 2-3 | | | | | 2.5 | CRITICAL INFRASTRUCTURE WITHIN FIVE MILES DOWN GRADIENT | | | | 3.0 SUMM | | MARY OF RELEVANT REPORTS, PERMITS AND INCIDENTS | | | | | 3.1 | SUMMARY OF REPORTS ON THE SAFETY OF THE MANAGEMENT UNIT(S) | | | | | ا.ن
3.2 | SUMMARY OF LOCAL, STATE AND FEDERAL ENVIRONMENTAL PERMITS | | | | | 3.2
3.3 | SUMMARY OF SPILL/RELEASE INCIDENTS (IF ANY) | | | | | 5.0 | | | | | 4.0 | SUM | MARY OF HISTORY OF CONSTRUCTION AND OPERATION | |-------|-------------------|---| | | 4.1 | SUMMARY OF CONSTRUCTION HISTORY. 4.1.1 Original Construction | | 5.0 | FIELI | D OBSERVATIONS | | | 5.1
5.2
5.3 | PROJECT OVERVIEW AND SIGNIFICANT FINDINGS. EARTH EMBANKMENT DAM. 5.2.1 Crest. 5.2.2 Upstream Slope. 5.2.3 Downstream Slope and Toe. 5.2.4 Abutments and Groin Areas. OUTLET STRUCTURES. 5.3.1 Overflow Structure. 5.3.2 Outlet Conduit. 5.2.3 Emergency Spillway (If Present). | | 6.0 | HYDI | ROLOGIC/HYDRAULIC SAFETY | | | 6.1
6.2
6.3 | SUPPORTING TECHNICAL DOCUMENTATION 6.1.1 Floods of Record 6.1.2 Inflow Design Flood 6.1.3 Spillway Rating 6.1.4 Downstream Flood Analysis ADEQUACY OF SUPPORTING TECHNICAL DOCUMENTATION ASSESSMENT OF HYDROLOGIC/HYDRAULIC SAFETY | | 7.0 | STRI | UCTURAL STABILITY | | | 7.1 | SUPPORTING TECHNICAL DOCUMENTATION | | Revis | ion 1, c | July 7, 2009 | | | 7.3 | ASSESSMENT OF STRUCTURAL STABILITY | | |-----|--------------------------------------|--|--| | 8.0 | MAINTENANCE AND METHODS OF OPERATION | | | | | 8.1
8.2
8.3 | DPERATIONAL PROCEDURES | | | 9.0 | SURVEILLANCE AND MONITORING PROGRAM | | | | | 9.1
9.2
9.3 | SURVEILLANCE PROCEDURES 9 INSTRUMENTATION MONITORING 9 9.2.1 Instrumentation Plan 9 9.2.2 Instrumentation Monitoring Results 9 9.2.3 Evaluation 9 ASSESSMENT OF SURVEILLANCE AND MONITORING PROGRAM 9 9.3.1 Adequacy of Inspection Program 9 9.3.2 Adequacy Instrumentation Monitoring Program 9 | | | | | 9.3.2 Adequacy Instrumentation Monitoring Program | | | | FIGI | JRES | | | | | Figure 1: Wood River Power Station Aerial Map Figure 2: Wood River Power Station Vicinity Map Figure 3: Figure 3: Figure 5: Wood River Power Station Vicinity Map Figure 5: Figure 6: Figure 7: Wood River Power Station Vicinity Map S | | | | APF | ENDICES | | | | APP | ENDIX A – REFERENCE DOCUMENTS | | | | | Doc 1: Relevant Maps | | | Doc 2: Selected drawings including plans, elevations, and sections of the management unit(s) | -11 | |---|------------| | Dac 2,1: Wood River Overview | -11 | | Doc 2.2: WAPS Cross Section Locations | 12 | | Doc 2.3: WAPS Typical Sections | 3 | | Dac 2.4: WAPS Existing Contours | 15 | | Doc 2.5: WAPS Plans for Proposed Ash Surface Pond | 17 | | Doc 2.6: WAPS Cross Sections | 9 | | Doc 2.7: WAPS Control and Sectioning Details | 23 | | Doc 2.8: WAPS Grading and Contours | <u>'</u> 4 | | Doc 2.9: WAPS Overall Site Plan A-2 | 27 | | Doc 2.10: EAPS Cross Sections | 8 | | Doc 2.11: EAPS Typical Sections | 12 | | Doc 2.12: EAPS Geometrics | 5 | | Doc 2.13: EAPS Expansion Plans | 17 | | Doc 2.14: EAPS Site Clearing and Laydown A-4 | 9 | | Doc 3: Plan and Sectional Drawing(s) showing Locations of Representative Monitoring Instruments A-5 | 0 | | Doc 3.1: Outfall Structure Details | 0 | | Doc 3.2: Piping Details | 0 | | Doc 3.3: Hydraulic Structures | ¦4 | | Doc 3.4: Drainage Culvert A-6 | 6 | | Doc 3.5: Misc. Details | i7 | | Doc 4: Constructions Specifications | 8 | | Doc 4.1: East Ash Pond Construction Specifications | 8 | | Doc 4.2: Phase 1; Pond 2E and Pond 3 Construction Specifications | 91 | | Doc 4.3: Phase 2; Pond 2E Construction Specifications | 9 | | Doc 5: Design Calculations and Commentary | 9 | | Doc 5.1: Wood River Design Calculations Selected Pages | 9 | | Doc 5.2: EAPS Misc Details | 12 | | Doc 5.3: Phase 1; Pond 2E and 3 Design Calculations | 14 | | Doc 5.4: Phase 2; Pond 2E Design Calculations | 9 | | Doc 6: Boring Logs | | | Dac 6.1: Log of Borings | | | Doc 6.2: EAPS Boring Logs | 8 | | Doc 6.3: EAPS Summary of Boring Logs A-45 | 5 | | Doc 7: Survey and Profiles | i7 | | Doc 8: Liners | | | Doc 8.1: WAPS Cooley Polypropylene Geomembrane Liners | i2 | | Doc 8.2: Geomembrane Clay Liner | 2 | | Doc 9: Operations and Maintenance Plan | | | Doc 10: Emergency Action Plan | 12 | | Doc II: Cells 1 and 2W Closure Work Plan Letter | | | Doc 12: Wood River Power Station Response to Request for Information Under CERCLA Section 104(e) A-58 | <u>1</u> 7 | ## APPENDIX B - PHOTOGRAPHS | Photo I: (EAPSP) At SW Bend Electrical Utilities, Wood River Power Station, Alton, IL, 05.28.09 | B- | |--|---------| | Photo 2: (EAPSP) At SW Bend Looking Down NW Embankment. Wood River Power Station, Alton, IL, 05.28.0 | 09 B- | | Photo 3: (EAPSP) Air Vent on Liner, Wood River Power Station, Alton, IL, 05.28.09 | B-2 | | Photo 4: (EAPSP) Black Polypropylene Liner, Wood River Power Station, Alton, IL, 05.28.09 | B-2 | | Photo 5: (EAPSP) Bottom Ash Discharge, Wood River Power Station, Alton, IL, 05.28.09 | B-3 | | Photo 6: (EAPSP) Bottom Ash Discharge (facing away from plant), Wood River Power Station, Alton, IL, OS | i.28.09 | | | B-3 | | Photo 7: (EAPSP) E Berms Facing Plant, Wood River Power Station, Alton, IL, 05.28.09 | B-4 | | Photo 8: (EAPSP) E Embankment, Wood River Power Station, Alton, IL, 05.28.09 | B-4 | | Photo 9: (EAPSP) Embankment Along N, Wood River Power Station, Alton, IL, 05.28.09 | B-5 | | Photo IO: (EAPSP) Embankment Along N EAPSP (1 of 3). Wood River Power Station, Alton, IL, 05.28.09 | B-5 | | Photo II: (EAPSP) Embankment Along N EAPSP (2 of 3), Wood River Power Station, Alton, IL, 05.28.09 | B-6 | | Photo 12: (EAPSP) Embankment Along N EAPSP (3 of 3), Wood River Power Station, Alton, IL, 05.28.09 | B-6 | | Photo 13: (EAPSP) Facing E, Wood River Power Station, Alton, IL, 05.28.09 | B-7 | | Photo 14: (EAPSP) Facing Plant Along NE Embankment, Wood River Power Station, Alton, IL, 05.28.09 | B-7 | | Photo 15: (EAPSP) Facing W Along N of EAPSP, Wood River Power Station, Alton, IL, 05.28.09 | B-8 | | Photo 16: (EAPSP) Fly Ash Discharge (1 of 3), Wood River Power Station, Alton, IL, 05.28.09 | B-8 | | Photo 17: (EAPSP) Fly Ash Discharge (2 of 3), Wood River Power Station, Alton, IL, 05.28.09 | B-9 | | Photo 18: (EAPSP) Fly Ash Discharge (3 of 3), Wood River Power Station, Alton, IL, 05.28.09 | B-9 | | Photo 19: (EAPSP) From Mid W Berm Looking Out at Peninsula (1 of 2), Wood River Power Station, Alton, IL | | | 05.28.09 | B-10 | | Photo 20: (EAPSP) From Mid W Berm Looking Out at Peninsula (2 of 2), Wood River Power Station, Alton, I | L, | | 05.28.09 | B-10 | | Photo 21: (EAPSP) Gage at Discharge Structure, Wood River Power Station, Alton, IL, 05.28.09 | B-1 | | Photo 22: (EAPSP) Grates Over Valves (Discharge Structure), Wood River Power Station, Alton, IL, 05.28. | .09 | | | B-1 | | Photo 23: (EAPSP) Liner (1 of 2), Wood River Power Station, Alton, IL, 05.28.09 | B-12 | | Photo 24: (EAPSP) Liner (2 of 2), Wood River Power Station, Alton, IL, 05.28.09 | B-12 | | Photo 25: (EAPSP) Liner Along NEAPSP, Wood River Power Station, Alton, IL, 05.28.09 | B-13 | | Photo 26: (EAPSP) Looking at Plant from SW Berm (ash shooting out to left), Wood River Power Station, A | | | 05.28.09 | B-13 | | Photo 27: (EAPSP) Looking at Plant from SWW Corner, Wood River Power Station, Alton, IL, 05.28.09 | B-14 | | Photo 28: (EAPSP) Looking E Along N EAPSP, Wood River Power Station, Alton, IL, 05.28.09 | B-14 | | Photo 29: (EAPSP) Looking in Pond from Mid W Berm, Wood River Power Station, Alton, IL, 05.28.09 | B-15 | | Photo 30: (EAPSP) Looking N from Peninsula, Wood River Power Station, Alton, IL, 05.28.09 | B-15 | | Photo 31: (EAPSP) Looking N from SW Corner, Wood River Power Station, Alton, IL, 05.28.09 | B-16 | | Photo 32: (EAPSP) Looking N with Plant Behind, Wood River Power Station, Alton, IL, 05.28.09 | B-16 | | Photo 33: (EAPSP) Looking NW at Standing Water, Wood River Power Station, Alton, IL, 05.28.09 | B-17 | | Photo 34: (EAPSP) Looking NW, Wood River Power Station, Alton, IL, 05.28.09 | B-17 | | Photo 35: (EAPSP) Looking S from Mid W Berm, Wood River Power Station, Alton, IL, 05.28.09 | B-18 | | Photo 36: (EAPSP) Looking S from SW Corner, Wood River Power Station, Alton, IL, 05.28.09 | B-18 | | Photo 37: (EAPSP) Looking W from Mid W Berm, Wood River Power Station, Alton, IL, 05.28.09 | B-19 | | NL-1- 20 (FARRI) M: J W D :+ NL-+ W J D: D C1-1: Alt II DE 20 NN | | | Photo 38: (EAPSP) Mid W Berm Looking at Plant, Wood River Power Station, Alton, IL, 05.28.09 | B-19 | | Photo 39: (EAPSP) N from EAPSP, Wood River Power Station, Alton, IL, 05.28.09 | B-20 | |---|----------| | Photo 40: (EAPSP) NE Corner Embankment, Wood River Power Station, Alton, IL, 05.28.09 | B-20 | | Photo 41: (EAPSP) NE Embankment (facing E), Wood River Power Station, Alton, IL, 05.28.09 | B-21 | | Photo 42: (EAPSP) On W Berm Facing Plant (SW), Wood River Power Station, Alton, IL, 05.28.09 | B-21 | | Photo 43: (EAPSP) Plant from E Berm of EAPSP, Wood River Power Station, Alton, IL, 05.28.09 | B-22 | | Photo 44: (EAPSP) Ponding at W Toe Drain Along Mid W Berm, Wood River Power Station, Alton, IL, 05.28.0 | 9 | | | B-22 | | Photo 45: (EAPSP) Ponding at the Tow of Embankment at SW Bend, Wood River Power Station, Alton, IL, O5 | .28.09 | | | B-23 | | Photo 46: (EAPSP) Toe Drain at SW Corner Base of Embankment (1 of 2), Wood River Power Station, Alton, | IL, | | 05.28.09 | B-23 | | Photo 47: (EAPSP) Toe Drain at SW Corner Base of Embankment (2 of 2), Wood River Power Station, Alton, | IL, | | 05.28.09 | B-24 | | Photo 48: (EAPSP) SE Embankment (facing away from plant), Wood River Power Station, Alton, IL, 05.28.0 | 3 | | | B-24 | | Photo 49: (EAPSP) SE Embankment (facing plant), Wood River Power Station, Alton, IL, 05.28.09 | B-25 | | Photo 50: (EAPSP) SW Embankment, Wood River Power Station, Alton, IL, 05.28.09 | B-25 | | Photo 51: (EAPSP) Toe Drain Area Along NE Embankment (behind RR tracks), Wood River Power Station, Alt | ton, IL, | | 05.28.09 | B-26 | | Photo 52: (EAPSP) Upstream Face of SE corner, Wood River Power Station, Alton, IL, 05.28.09 | B-26 | | Photo 53: (EAPSP) Discharge Structure, Wood River Power Station, Alton, IL, 05.28.09 | B-27 | | Photo 54: (EAPSP) Embankment between Primary and Secondary Cells, Wood River Power Station, Alton, I | L, | | 05.28.09 | B-27 | | Photo 55: (EAPSS) 1 of 2, Wood River Power Station, Alton, IL, 05.28.09 | B-28 | | Photo 56: (EAPSS) 2 of 2, Wood River Power Station, Alton, IL, 05.28.09 | B-28 | | Photo 57: (EAPSS) Ponding Water Apparently from Recent Rains, Wood River Power Station, Alton, IL, 05.2 | 8.09 | | | B-29 | | Photo 58: (EAPSS) Confluence of Ponds at 4 V-Notch Weirs in Discharge Structure, Wood River Power Sta | tion, | | Alton, IL, 05.28.09 | B-29 | | Photo 59: (EAPSS) Discolored Runoff from Roadway or Crest of Embankment Along N of E Berm, Wood Riv | er | | Power Station, Alton, IL, 05.28.09 | B-30 | | Photo 60: (EAPSS) Flow Meter on Discharge Structure, Wood River Power Station, Alton, IL, 05.28.09 | B-30 | | Photo 61: (EAPSS) From SW Corner, Wood River Power Station, Alton, IL, 05.28.09 | B-31 | | Photo 62: (EAPSS) Gage at Discharge Structure, Wood River Power Station, Alton, IL, 05.28.09 | B-31 | | Photo 63: (EAPSS) Inflow Pipe from Primary Cell, Wood River Power Station, Alton, IL, 05.28.09 | B-32 | | Photo 64: (EAPSS) Looking N from E Berm, Wood River Power Station, Alton, IL, 05.28.09 | B-32 | | Photo 65: (EAPSS) Looking Up at N Embankment of EAPSP, Wood River Power Station, Alton, IL, 05.28.09 | B-33 | | Photo 66: (EAPSS) Taken from NW Corner (inflow pipe from Primary cell), Wood River Power Station, Alto | n, IL, | | 05.28.09 | B-33 | | Photo 67: (EAPSS) V-Notch Weir in Discharge Structure, Wood River Power Station, Alton, IL, 05.28.09. | B-34 | | Photo 68: (EAPSS) Discharge Structure, Wood River Power Station, Alton, IL, 05.28.09 | B-34 | | Photo 69: (WAPS) Cell 1, Coal Pile and SE Embankment of Cell 1, Wood River Power Station, Alton, IL, 05.29. | 09 | | | B-35 | | Photo 70: (WAPS) Cell 1, Looking Up N Embankment, Wood River Power Station, Alton, IL, 05.29.09 | B-35 | | | Photo 71: (WAPS) Cell 1, NE Embankment (Cell 3 below it), Wood River Power Station, Alton, IL, 05.29.09. | B-36 | |-----|--|-----------------| | | Photo 72: (WAPS) Cell 1, South Side, Coal Behind, Wood River Power Station, Alton, IL, 05.29.09 | B-36 | | | Photo 73: (WAPS) Cell 1, Storage Area (filled with surface runoff), Wood River Power Station, Alton, IL, 05. | | | | DL_+- 7/ (WADE) P_U CW P (LL) W D; D C; Al U DE 20 00 | B-37
B-37 | | | Photo 74: (WAPS) Cell 1, SW Corner (embankment), Wood River Power Station, Alton, IL, 05.29.09 | | | | Photo 75: (Cell 2E) 4 V-Notch Weir Discharge Structure into Cell 3, Wood River Power Station, Alton, IL, 05 | J.Za.ua
B-38 | | | Photo 76: (WAPS) Cell 2E, Staff Gage, Wood River Power Station, Alton, IL, 05.29.09 | B-38 | | | Photo 77: (WAPS) Cell 2E, Liner, Wood River Power Station, Alton, IL, 05.29.09Photo 77: (WAPS) Cell 2E, Liner, Wood River Power Station, Alton, IL, 05.29.09 | B-39 | | | Photo 78: (WAPS) Cell 2E, N Embankment (1 of 2), Wood River Power Station, Alton, IL, 05.29.09 | B-39 | | | Photo 79: (WAPS) Cell 2E, N Embankment (2 of 2) ~25-30', Wood River Power Station, Alton, IL, 05.25.05 | в-40 | | | Photo 80: (WAPS) Cell 2E, W Embankment, Wood River Power Station, Alton, IL, 05.29.09 | B-40 | | | Photo 81: (WAPS) Cell 2W, 1 of 2, Wood River Power Station, Alton, IL, 05.29.09 | B-41 | | | Photo 82: (WAPS) Cell 2W, 7 of 2, Wood River Power Station, Alton, IL, 05.29.09 | B-41 | | | Photo 83: (WAPS) Cell 2W, Embankment N of Cell 2W, Wood River Power Station, Alton, IL, 05.29.09 | B-42 | | | Photo 84: (WAPS) Cell 2W Looking from Between Cells 2E and 1, Wood River Power Station, Alton, IL, 05.29 | | | | Filoto 04: (WAF3) Gell 2W Looking Irolli between Gells 2L alid I, Wood Kiver Fower Station, Alton, IL, 03.23 | .ua
B-42 | | | Photo 85: (WAPS) Cell 2W, NE Corner; N Embankment of Cell 2E, Wood River Power Station, Alton, IL, 05.25 | | | | Thota da. (Thi dy dail 211, Ne dai hai , N einbailkinaite di dail 22, Mada Kivai Tawai ditatiai, Mtaii, 12, da.22 | B-43 | | | Photo 86: (WAPS) Cell 2W, SW Embankment, Wood River Power Station, Alton, IL, 05.29.09 | B-43 | | | Photo 87: (WAPS) Cell 3, E Berm, Wood River Power Station, Alton, IL, 05.29.09 | B-44 | | | Photo 88: (WAPS) Cell 3, Flow Meter, Wood River Power Station, Alton, IL, 05.29.09 | B-44 | | | Photo 89: (WAPS) Cell 3, N Embankment, Wood River Power Station, Alton, IL, 05.29.09 | B-45 | | | Photo 90: (WAPS) Cell 3, Interior Berm Between Cell 3 and Cell 2E, Wood River Power Station, Alton, IL, 05 | | | | | B-45 | | | Photo 91: (WAPS) Cell 3, N Berm, Wood River Power Station, Alton, IL, 05.29.09 | B-46 | | | Photo 92: (WAPS) Cell 3, N Embankment, Wood River Power Station, Alton, IL, 05:29.09 | B-46 | | | Photo 93: (WAPS) Cell 3, NW Embankment, Wood River Power Station, Alton, IL, 05.29.09 | B-47 | | | Photo 94: (WAPS) Cell 3, Outfall Structure, Wood River Power Station, Alton, IL, 05.29.09 | B-47 | | | Photo 95: (WAPS) Cell 3, W Side of Cell 3, Wood River Power Station, Alton, IL, 05.29.09 | B-48 | | | Photo 96: (WAPS) Cell 2E, Coal Pile Runoff Outfall Wood River Power Station, Alton, IL, 05.29.09 | B-48 | | | Photo 97: (WAPS) Joint Embankment of Cell 2E and Cell 1, Wood River Power Station, Alton, IL, 05.29.09 | B-49 | | | Photo 98: (WAPS) Cell 1 Embankment Near Coal Pile, Wood River Power Station, Alton, IL, 05.29.09 | B-49 | | APP | ENDIX C – FIELD OBSERVATION CHECKLISTS | | | | East Ash Road System (EARS) | C-1 | | | East Ash Pond System (EAPS) | C-9 | | | West Ash Pond System (WAPS) | L-3 | | APP | ENDIX D - MISCELLANEOUS NOTES AND CORRESPONDENCE | | | | Wood River Power Station Site Visit Attendance Sheet | D-1 | | | Wood River Power Station Meeting Notes | D-3 | | | Wood River Power Station Site Walk Notes | D-5 | | | | | Revision 1, July 7, 2009 #### 1.0 CONCLUSIONS AND RECOMMENDATIONS #### 1.1 CONCLUSIONS The conclusions below were reached as a result of a visual investigation performed on Thursday and Friday, May 28 and 29, 2009, as well as a review of existing documentation acquired from various sources including information provided by Dynegy Midwest Generation, Inc., (Dynegy), the current owner and operator of the Wood River Power Station. - 1.1.1 Conclusions Regarding the Structural Soundness of the Management Unit(s) The embankments viewed in the field appeared to be well designed and constructed and well-maintained. There were no visible signs of seepage or sloughing, nor were there any large diameter trees on the embankment. - 1.1.2 Conclusions Regarding the Hydrologic/Hydraulic Safety of the Management Unit(s) The embankments appear to be safe from overtopping and resulting failure. The management units do not drain any appreciable areas other than the surface area of the ponds. - 1.1.3 Conclusions Regarding the Adequacy of Supporting Technical Documentation The supporting technical documents appear to be adequate. The original design calculations and drawings are included as Document 5 in Appendix A. - 1.1.4 Conclusions Regarding the Description of the Management Unit(s) The description of the management units provided by Dynegy was an accurate representation of what was observed in the field. - 1.1.5 Conclusions Regarding the Field Observations Dynegy staff provided access requested to make the field observations. There was sufficient time and weather conditions to complete all Field observations. The conclusions provided in this section reflect the engineering team's field observations. The team observed no conditions requiring immediate remedial action. - 1.1.6 Conclusions Regarding the Adequacy of Maintenance and Methods of Operation The current maintenance practices appear to be adequate. - 1.1.7 Conclusions Regarding the Adequacy of the Surveillance and Monitoring Program The surveillance and inspection procedures outlined in the Operations and Maintenance Plan appear to be adequate. There is currently no instrumentation monitoring plan for the embankments. - 1.1.8 Conclusions Regarding Suitability for Continued Safe and Reliable Operation The field observations and review of documents lead the Dewberry team to conclude that the condition of the Coal Combustion Waste management units appear to be adequate for continued safe and reliable operation. Furthermore, this unit can be classified as SATISFACTORY based upon the guidance issued in the Scope of Work, in which SATISFACTORY is defined as, "No existing or potential management unit safety deficiencies are recognized. Acceptable performance is expected under all applicable loading conditions (static, hydrologic, seismic) in accordance with the applicable criteria. Minor maintenance items may be required." #### 1.2 RECOMMENDATIONS Based on the above conclusions as well as the sum of information found within this report, the recommendations presented below are proposed. - 1.2.1 Recommendations Regarding the Structural Stability None appear warranted at this time. - 1.2.2 Recommendations Regarding the Hydrologic/Hydraulic Safety None appear warranted at this time. - 1.2.3 Recommendations Regarding the Supporting Technical Documentation None appear warranted at this time. - 1.2.4 Recommendations Regarding the Description of the Management Unit(s) None appear warranted at this time. - 1.2.5 Recommendations Regarding the Field Observations None appear warranted at this time. - 1.2.6 Recommendations Regarding the Maintenance and Methods of Operation None appear warranted at this time. - 1.2.7 Recommendations Regarding the Surveillance and Monitoring Program None appear warranted at this time. - 1.2.8 Recommendations Regarding Continued Safe and Reliable Operation None appear warranted at this time. #### 1.3 PARTICIPANTS AND ACKNOWLEDGEMENT #### 1.3.1 List of Participants (Full list of Site meeting attendees can be found in Appendix D) Cleighton Smith, Dewberry Lauren Ohotzke, Dewberry Rick Diericx, Dynegy Tom Davis, Dynegy Bob Crowe, Dynegy Don Grahlherr, URS Joe Kimlinger, URS Don Crove, Dynegy Susan McVety, Dynegy Kenneth E. Smith, IEPA Ted Dragovich, IEPA Chris Liebmann, IEPA Revision 1, July 7, 2009 | We acknowledge that the management units reference 2009. | renced herein have been assessed or | 1 May 28 and May 29 | |----------------------------------------------------------|-------------------------------------|---------------------| | Cleighton Smith, PE (IL # 062.040606) | | | | | | | | Lauren Ohotzke, Civil Engineer | | | | | | | #### 2.0 DESCRIPTION OF THE COAL COMBUSTION WASTE MANAGEMENT UNIT(S) #### 2.1 LOCATION The Wood River Power Station is located in the town of Alton, in southwestern Illinois on the eastern bank of the Mississippi River, approximately 17 miles northeast of St. Louis (Latitude 38° 51′ 44.15″ and Longitude 90° 08′ 0.634″). There are two CCW management units at the Wood River Power Station: the two-cell East Ash Pond System (EAPS), and the four-cell West Ash Pond System (WAPS), (See Figure 1). As shown on Figure 1, the two-cell EAPS is located on the eastern side of Chessen Lane, just north of the Mississippi River. The Wood River Creek runs along the eastern edge of this system, just beyond an earthen dike. This system consists of a primary and a secondary cell. The primary cell is referred to in the site visit photos found in Appendix B as EAPSP, or East Ash Pond System, Primary cell. Similarly, the secondary cell in this system is referenced as EAPSS, or East Ash Pond System, Secondary cell, in Appendix B. The primary cell is closest to the actual plant. The secondary cell is essentially in the northeast corner of the primary cell. The four-cell WAPS is located to the north west of the EAPS on the western side of Chessen Lane (see Figure 1). The four cells within this system include Cell 1, Cell 2E, Cell 2W, and Cell 3. Cell 1 is directly west of the EAPS. Cell 3 is directly above (north of) the eastern side of Cell 1. Cell 2E is to the west of Cell 3, above the western side of Cell 1. The eastern border of Cell 2W shares a berm with both Cell 2E, to the north, and Cell 1, to the south. Cell 2W then stretches out westward to the edge of the property. #### 2.2 SIZE AND HAZARD CLASSIFICATION The EAPS is not listed within the National Inventory of Dams (NID) database. However, the Illinois Department of Natural Resources Office of Water Resources, IDNR OWR, has classified the EAPS as a Class I small dam, similar to that of the U.S. Army Corp of Engineers' high hazard potential category. The EAPS, as a whole, has a surface area of 39 acres. The approximate maximum height of the EAPS is 33 feet. Cells 1 and 2W, of the WAPS have been inactive for an extended period of time. Official closure requests have been made, and are awaiting approval verification. As such, these two cells have not been assigned an official hazard classification. The Closure Work Plan is included as Appendix A, Document 11. Cells 2E and 3 of the WAPS have a combined surface area of 19 acres. Cell 2E has an approximate maximum dam height of 20 feet. Cell 3 also has an approximate maximum dam height of 20 feet. Cell 2E and Cell 3 of the WAPS have been rated as low in the NID and have been labeled as Class III small dams by the IDNR OWR. The rank of Class III is similar to that of the U.S. Army Corp of Engineers' low hazard potential category. #### 2.3 AMOUNT AND TYPE OF RESIDUALS CURRENTLY CONTAINED IN THE UNIT(S) AND MAXIMUM CAPACITY The EAPS has been designed to permanently contain the following materials: Flv ash Bottom ash Boiler slag Coal pyrite sluice water Ash hopper overflow Demineralizer regenerant wastes Water treatment clarifier sludge Water treatment filter backwash Units 1-5 turbine rooms and boiler rooms drains Coal pile runoff Coal conveyor drain line Non-chemical metal cleaning wastes Area runoff Dredge spoils Demineralizer brine Similarly, Cells 2E and 3 of the WAPS have been designed to permanently contain the following materials: Fly ash Bottom ash Boiler slag Coal pyrites sluice water Ash hopper overflow Boiler blowdown Demineralizer regenerant wastes Water treatment clarifier sludge Water treatment filter backwash Units 1-5 turbine rooms and boiler room drains Coal pile runoff Coal conveyor drain line Non-chemical metal cleaning wastes Area runoff Dredge spoils Demineralizer brine The EAPS currently contains the materials listed above to permanently exist within the EAPS. The estimated design storage volume/capacity is 435 ac-ft; Dynegy reports the system to be currently operating at a capacity of 58 ac-ft. Cell 2E of the WAPS currently contains the above materials specified to permanently exist within the WAPS. Cell 2E has a maximum design volume/capacity of 12D ac-ft; Dynegy reports the system to be currently operating at a capacity of 119 ac-ft of materials. Cells I and 2W of the WAPS are no longer in use, but have not yet been officially closed. Cell 2W is full of wildlife and vegetation and is essentially a wetland, although it does not have that official classification. #### Revision 1, July 7, 2009 Cell 3 of the WAPS currently contains the above materials listed to permanently exist within the WAPS. Cell 3 is active has a maximum design volume/capacity of 90 ac-ft; Dynegy reports the system to be currently operating at a capacity of 9 ac-ft. #### 2.4 PRINCIPAL PROJECT STRUCTURES - 2.4.1 Earth Embankment Dam Based on Dynegy design files, the East Ash Pond System is comprised of earth embankments with downstream side slopes of 3:1 (horizontal:vertical) and upstream side slopes of 3:5:1. There is a 1 foot clay blanket under a geo-membrane liner on the upstream side. The West Ash Pond System is comprised of earth embankments with downstream side slopes of 3:1 and upstream side slopes of 3:1. There is 3 foot of clay on the upstream side. - 2.4.2 Outlet Structures The outlet structures of both the East Ash Pond System and the West Ash Pond System are similar overflow type V-notched concrete spillways that each discharge into a culvert that drains to an existing culvert that drains into Wood River. #### 2.5 CRITICAL INFRASTRUCTURE WITHIN FIVE MILES DOWN GRADIENT The inundation map prepared by Dynegy for their Emergency Action Plan (see Appendix A, Document 10) indicates that the failure floodwave would dissipate before five miles down gradient. Nonetheless there is a sewage treatment plant within one mile of the East Ash Pond System embankment. #### 3.0 SUMMARY OF RELEVANT REPORTS, PERMITS AND INCIDENTS - 3.1 SUMMARY OF REPORTS ON THE SAFETY OF THE MANAGEMENT UNIT(S) No previous reports on safety were provided. - 3.2 SUMMARY OF LOCAL, STATE AND FEDERAL ENVIRONMENTAL PERMITS The State of Illinois Department of Natural Resources Dam Safety Office has regulatory oversight over the embankments comprising the East Ash Pond System (permit number is DS2005052). - 3.3 SUMMARY OF SPILL/RELEASE INCIDENTS (IF ANY) As stated by Dynegy, to the best of their knowledge, neither the East Ash Pond System nor the West Ash Pond System has had any spills or unpermitted releases of coal combustion residues or byproducts to surface water or land. #### 4.0 SUMMARY OF HISTORY OF CONSTRUCTION AND OPERATION #### 4.1 SUMMARY OF CONSTRUCTION HISTORY #### 4.1.1 Original Construction Both the Primary and Secondary cells of the EAPS, as well as Cells 2E and 3 of the WAPS were designed and constructed under the supervision of a registered Professional Engineer. This individual was employed by Dynegy or the previous owner of the Wood River Power Station. Construction was performed in stages, from approximately 1996 through 2006. #### 4.1.2 Significant Changes/Modifications in Design since Original Construction There have been no significant changes/modification in design since the original construction of the CCW units at the Wood River Power Station. #### 4.1.3 Significant Repairs/Rehabilitation since Original Construction There have been no significant repairs/rehabilitation since the original construction of the CCW units at the Wood River Power Station. #### 4.7 SLIMMARY OF OPERATIONAL HISTORY #### 4.2.1 Original Operational Procedures The EAPS was commissioned (began receiving ash) in 2006, and has since not been expanded. Cells 2E and 3 of the WAPS were commissioned (began receiving ash) in 1997. There are no records regarding the time of commission for Cells 1 and 2W of the WAPS. #### 4.2.2 Significant Changes in Operational Procedures since Original Startup There have not been any significant changes in operational procedures since the original startup at the Wood River Power Station. #### 4.2.3 Current Operational Procedures The current operational procedures are: Fly ash is either sold to the local market or discharged to the EAPS Primary Cell; boiler ash is discharged to EAPS Primary Cell. Decant is discharged into the Secondary cell, where it is discharged via the outfall structure into Wood River. #### Revision 1, July 7, 2009 - Coal Pile Runoff is pumped to WAPS Cell 2E, the decant is discharged into Cell 3, where it is discharged via the outfall structure into Wood River. - Coal combustion waste previously stored in Cells 1 and 2E are occasionally mined and sold to local buyers. - As previously stated, Dynegy has a draft closure plan in place for Cells 1 and 2W (see Appendix A, Document 11). #### 4.2.4 Other Notable Events since Original Startup There have been no other notable events reported by Dynegy since original startup. #### 5.0 FIELD OBSERVATIONS #### 5.1 PROJECT OVERVIEW AND SIGNIFICANT FINDINGS The EAPS at the Wood River Power Station was visually observed on Thursday, May 28, 2009. The WAPS was similarly observed on Friday, May 29, 2009. A series of photographs taken during this investigation can be found in Appendix B of this report. In addition, a field checklist is included as Appendix C. Based upon the field observations, the following findings are reported: The embankments at the East Ash Pond System and the West Ash Pond System have been designed by a professional engineer and appear to be well constructed and structurally sound. There is regulatory oversight under the State of Illinois Dam Safety Program. #### 5.2 EARTH EMBANKMENT DAMS - 5.2.1 Crests appear to be structurally sound. - 5.2.2 Upstream Slopes appear to be structurally sound. - 5.2.3 Downstream Slopes and Toes—appear to be structurally sound; a few ponding areas at the toe were noted but deemed to be from recent rains. - 5.2.4 Abutments and Groin Areas not applicable. #### 5.3 OUTLET STRUCTURES - 5.3.1 Overflow Structure appears to be structurally sound. - 5.3.2 Outlet Conduit not visible. - 5.2.3 Emergency Spillway (If Present) not applicable. #### 6.0 HYDROLOGIC/HYDRAULIC SAFETY - 6.1 SUPPORTING TECHNICAL DOCUMENTATION (Provided by Dynegy, see Appendix A, Document 5) - 6.1.1 Floods of Record Not recorded by Dynegy. - 6.1.2 Inflow Design Flood -Probable Maximum Flood, appropriate based on Illinois Dam Safety criteria - 6.1.3 Spillway Rating (Provided by Dynegy, see Appendix A, Document 5) - 6.1.4 Downstream Flood Analysis Dynegy has prepared an inundation map (see Appendix A, Document 5). - 6.2 ADEQUACY OF SUPPORTING TECHNICAL DOCUMENTATION Appears to be adequate. - 6.3 ASSESSMENT OF HYDROLOGIC/HYDRAULIC SAFETY Appears to be adequate. #### 7.0 STRUCTURAL STABILITY #### 7.1 SUPPORTING TECHNICAL DOCUMENTATION - 7.1.1 Stability Analyses and Load Cases Analyzed Provided by Dynegy (Appendix A, Document 5), appears to be appropriate. - 7.1.2 Design Properties and Parameters of Materials Provided by Dynegy (Appendix A, Document 5), appears to be appropriate. - 7.1.3 Uplift and/or Phreatic Surface Assumptions not considered in design of embankment, due to upstream liner. - 7.1.4 Factors of Safety and Base Stresses Provided by Dynegy (Appendix A, Document 5), factors of safety greater than 1.8 for all cases analyzed. - 7.1.5 Liquefaction Potential Provided by Dynegy (Appendix A, Document 5), appears to be appropriate. - 7.1.6 Critical Geological Conditions Provided by Dynegy (Appendix A, Document 5), appears to be appropriate. - 7.2 ADEQUACY OF SUPPORTING TECHNICAL DOCUMENTATION Appears to be adequate. #### 7.3 ASSESSMENT OF STRUCTURAL STABILITY The embankments at the East Ash Pond System are structurally stable, based on: - review of design calculations, including factors of safety for embankment stability for a variety of load cases, as well as a review of other design calculations, all of which are consistent with industry practice and sealed by a licensed professional engineer, and - visual observation on May 27, 2009, where no warning signs of concern were noted. #### 8.0 MAINTENANCE AND METHODS OF OPERATION - 8.1 OPERATIONAL PROCEDURES Provided by Dynegy (Appendix A, Document 9) - 8.2 MAINTENANCE OF THE DAM AND PROJECT FACILITIES Provided by Dynegy (Appendix A, Document 9) - 8.3 ASSESSMENT OF MAINTENANCE AND METHODS OF OPERATION - 8.3.1 Adequacy of Operational Procedures Appears to be adequate - 8.3.2 Adequacy of Maintenance Appears to be adequate #### 9.0 SURVEILLANCE AND MONITORING PROGRAM #### 9.1 SURVEILLANCE PROCEDURES Daily, weekly, semi-annual and annual inspections, or surveillance operations, are performed at the Wood River Power Station. The daily, weekly and semi-annual surveillance operations are conducted by Dynegy Station operations personnel, whereas the annual inspections are performed by a civil engineer, specifically a registered PE with experience in similar operations. For more information, see the Operations and Maintenance Plan provided by Dynegy, located in Appendix A, Document 9). #### 9.2 INSTRUMENTATION MONITORING - 9.2.1 Instrumentation Plan None - 9.2.2 Instrumentation Monitoring Results None - 9.2.3 Evaluation A plan of instrumentation and monitoring does not appear to be warranted for these lined embankments at this time. #### 9.3 ASSESSMENT OF SURVEILLANCE AND MONITORING PROGRAM - 9.3.1 Adequacy of Inspection Program Appears to be adequate. - 9.3.2 Adequacy Instrumentation Monitoring Program There is no instrumentation monitoring program and none appears warranted at this time for the lined embankments. In view of the observed sound condition of the embankments, the daily, weekly, semi-annual, and annual inspections of the impoundment structures together with the emergency action plan that is in place, there appear to be sufficient safeguards at this time. Figure 1: Wood River Power Station Aerial Map Figure 2: Wood River Power Station Vicinity Map